Phase II Study of a Radiotherapy Total Dose Increase in Hypoxic Lesions Identified by 18F-Misonidazole PET/CT in Patients with Non–Small Cell Lung Carcinoma (RTEP5 Study)

Pierre Vera1, Sébastien Thureau2, Philippe Chaumet-Riffaud3, Romain Modzelewski4, Pierre Bohn1, Maximilien Vermandel4, Sébastien Hapdey1, Amandine Pallardy5, Marc-André Mahé6, Marie Lacombe7, Pierre Boisselier8, Sophie Guillemand9, Pierre Olivier10, Veronique Beckendorf11, Naji Salem12, Nathalie Charrier13, Enrique Chajon14, Anne Devillers15, Nicolas Aide16, Serge Danhier17, Fabrice Denis18, Jean-Pierre Muratet19, Etienne Martin20, Alina Berriolo Riedinger21, Helène Kolesnikov-Gauthier22, Eric Dansin23, Carole Massabeau24, Frédéric Courbon25, Marie-Pierre Farcy Jacquet26, Pierre-Olivier Kotski9,27, Claire Houzard28, Françoise Mornex29, Laurent Vervueren30, Amaury Paumier31, Philippe Fernandez32, Mathieu Salan33, and Bernard Dubray2

1Department of Nuclear Medicine, Henri Becquerel Cancer Center and Rouen University Hospital & QuantIF-LITIS, University of Rouen, Rouen, France; 2Department of Radiation Oncology and Medical Physics, Henri Becquerel Cancer Center and Rouen University Hospital & QuantIF-LITIS, Rouen, France; 3Department of Nuclear Medicine, Hôpitaux universitaires Paris Sud, Paris, France; 4University Lille, Inserm, CHU Lille, U1189–ONCO-THAI–Image Assisted Laser Therapy for Oncology, Lille, France; 5Department of Nuclear Medicine, Nantes University Hospital, Nantes, France; 6Department of Radiation Oncology, Institut de Cancérologie de l’Ouest (ICO)-René Gauducheau, Nantes, France; 7Department of Nuclear Medicine, Institut de Cancérologie de l’Ouest (ICO), Nantes, France; 8Department of Radiation Oncology, Institut régional du Cancer Montpellier (ICM), Montpellier, France; 9Department of Nuclear Medicine, Institut régional du Cancer Montpellier (ICM), Montpellier, France; 10Department of Nuclear Medicine, Brabois University Hospital, Nancy, France; 11Department of Radiation Oncology, Institut Claudius Regaud, Toulouse, France; 12Department of Nuclear Medicine, Institut Claudius Regaud, IUCT, Toulouse, France; 13Department of Radiation Oncology, Centre hospitalier universitaire de l’Ouest, site Paul Papin, France; 14Department of Nuclear Medicine, Centre hospitalier universitaire de l’Ouest, site Paul Papin, France; 15Department of Nuclear Medicine, Centre hospitalier universitaire de l’Ouest, site Paul Papin, France; 16Department of Radiation Oncology, Institut Inter-Régional de Cancérologie (ILC), Centre Jean Bernard/Clinique Victor Hugo, Le Mans, France; 17Department of Nuclear Medicine, Institut Inter-Régional de Cancérologie (ILC), Centre Jean Bernard/Clinique Victor Hugo, Le Mans, France; 18Department of Radiation Oncology, Centre Georges-François Leclerc, Dijon, France; 19Department of Nuclear Medicine, Centre Georges François Leclerc, Dijon, France; 20Department of Nuclear Medicine, Oscar Lambret Center, Lille, France; 21Department of Radiation Oncology, Oscar Lambret Center, Lille, France; 22Department of Radiology, Institut Universitaire du Cancer, Toulouse, France; 23Department of Nuclear Medicine, Institut Claudius Regaud, IUCT, Toulouse Cedex 9, France; 24Department of Radiation Oncology, CHU de Nîmes, Institut de Cancérologie du Gard, Rue Henri Pujol, Nîmes, France; 25Department of Nuclear Medicine, CHU de Nîmes, Institut de Cancérologie du Gard, Nîmes, France; 26Department of Nuclear Medicine, Hospices Civils de Lyon, Lyon, France; 27Department of Radiation Oncology, Hospices Civils de Lyon, Lyon, France; 28Department of Nuclear Medicine, CHU Angers, France; 29Department of Radiation Oncology, Centre de Cancérologie de l’Ouest, site Paul Papin, France; 30Department of Nuclear Medicine, Hôpital Pellegrin, CHU de Bordeaux, France; and 31Department of Pulmonology–Thoracic Oncology–Respiratory Intensive Care, Rouen, France

This multicenter phase II study investigated a selective radiotherapy dose increase to tumor areas with significant 18F-misonidazole (18F-FMISO) uptake in patients with non–small cell lung carcinoma (NSCLC). **Methods:** Eligible patients had locally advanced NSCLC and no contraindication to concomitant chemoradiotherapy. The 18F-FMISO uptake on PET/CT was assessed by trained experts. If there was no uptake, 66 Gy were delivered. In 18F-FMISO-positive patients, the contours of the hypoxic area were transferred to the radiation oncologist. It was necessary for the radiotherapy dose to be as high as possible while fulfilling dose-limiting constraints for the spinal cord and lungs. The primary endpoint was tumor response (complete response plus partial response) at 3 mo. The secondary endpoints were toxicity, disease-free survival (DFS), and overall survival at 1 y. The target sample size was set to demonstrate a response rate of 40% or more (bilateral α = 0.05, power 1-β = 0.95). **Results:** Seventy-nine patients were preinclusion, 54 were included, and 34 were 18F-FMISO–positive, 24 of whom received escalated doses of up to 86 Gy. The response rate at 3 mo was 31 of 54 (57%; 95% confidence interval [CI], 43%-71%) using RECIST 1.1 (17/34 responders in the 18F-FMISO–positive group).
Radiotherapy is a major component in the treatment of non-resectable locally advanced non–small cell lung cancer (NSCLC) (1). Although concomitant radiochemotherapy (CCRT) is the current standard for curative-intent treatment, the tumor control rate and survival probabilities remain disappointing. Improvements in radiotherapy techniques should yield better intrathoracic control; a reduction in secondary distant dissemination; less normal-tissue damage; and as a consequence, reduced mortality caused by cancer, toxicity, or worsening of preexisting comorbidities. The identification of the adequate target volumes and the delivery of sufficiently high total doses are closely linked. Phase II studies have shown that higher doses could only be delivered to smaller target volumes (2,3). The RTOG 0617 randomized trial reported lower survival probabilities in 18F-FMISO-negative patients (P = 0.004). The radiotherapy dose was not associated with DFS when adjusting for the 18F-FMISO status. One toxic death (66 Gy) and 1 case of grade 4 pneumonitis (>66 Gy) were reported. Conclusion: Our approach results in a response rate of 40% or more, with acceptable toxicity. 18F-FMISO uptake in NSCLC patients is strongly associated with poor prognosis features that could not be reversed by radiotherapy doses up to 86 Gy.

Key Words: positron emission tomography; fluoro-deoxy-D-glucose; f-misonidazole; hypoxia; lung cancer; radiotherapy dose

J Nucl Med 2017; 58:1045–1053
DOI: 10.2967/jnumed.116.188367

Rationale for selective dose escalation.

DFS and overall survival at 1 y were 0.86 (95% CI, 0.77–0.96) and 0.63 (95% CI, 0.49–0.74), respectively. DFS was longer in the 18F-FMISO-negative patients (P = 0.004). The radiotherapy dose was not associated with DFS when adjusting for the 18F-FMISO status. One toxic death (66 Gy) and 1 case of grade 4 pneumonitis (>66 Gy) were reported.

Conclusion: Our approach results in a response rate of 40% or more, with acceptable toxicity. 18F-FMISO uptake in NSCLC patients is strongly associated with poor prognosis features that could not be reversed by radiotherapy doses up to 86 Gy.

Key Words: positron emission tomography; fluoro-deoxy-D-glucose; f-misonidazole; hypoxia; lung cancer; radiotherapy dose

J Nucl Med 2017; 58:1045–1053
DOI: 10.2967/jnumed.116.188367

In a phase II study, we used 18F-misonidazole (18F-FMISO), a PET/CT tracer for hypoxic cells, to identify and delineate hypoxic areas as biologic target volumes (BTVs) for escalated total dose radiotherapy associated with concomitant chemotherapy. A rigorous quality assurance protocol was set to ensure that all PET/CT images were acquired under reproducible conditions. The presence of 18F-FMISO uptake was assessed by consensus by trained experts (5). The BTVs were centrally delineated. The primary endpoint was the tumor response at 3 mo after CCRT. The secondary endpoints were acute and late toxicity, as well as disease-free survival (DFS) and overall survival (OS) at 1 y.

MATERIALS AND METHODS

Study Design and Patients

The design of the study is described in Figure 1. Between June 6, 2012, and March 19, 2015, the patients with NSCLC referred to the participating centers for CCRT were prospectively preincluded. Fifteen academic centers included patients into the study.

The main inclusion criteria were age older than 18 y; histologic proof of NSCLC with a measurable tumor (RECIST1.1); World Health Organization performance status of 1 or less; eligibility for curative-intent CCRT (no pleural, pulmonary, or extrathoracic metastases and no comorbidity contraindicating CCRT); adequate lung function (forced expiratory volume ≥ 40% and diffusing capacity of the lung divided by the alveolar volume ≥ 50% of the predicted values; PaO2 ≥ 60 mm Hg); a neutrophil count of more than 1.5 × 10⁹ cells/L, platelet count more than 100 × 10⁹/L, and hemoglobin more than 10 g/dL; and an estimated creatinine clearance of more than 60 mL/min. All patients had to receive cisplatin-based chemotherapy as the induction treatment and concomitantly with radiotherapy. Inclusion was confirmed after completion of a radiotherapy plan confirming that the dose objective (a minimum dose of 60 Gy in 99% of the planning target volume) and the constraints (lungs, spinal cord) could be met.

The noninclusion criteria were histology other than primary NSCLC; a nonevaluable lesion (complete remission after induction chemotherapy); no uptake or metastases on the first acquisition of 18F-FDG PET/CT (18F-FDG, PET/CT) performed after the induction chemotherapy and before CCRT; contraindication of curative-intent radiotherapy (tumor extension, World Health Organization performance status ≥ 2, coexistent disease); synchronous cancer or previous malignancy within 5 y before inclusion; patient already participating in another clinical trial; confirmed or suspected pregnancy and lactating females; renal insufficiency contraindicating cisplatin treatment; patients under legal protection; inability to comply with the follow-up procedures for geographic, social, or psychologic reasons; uncontrolled diabetes mellitus (blood glucose ≥ 10 mmol/L); and patients unable to give informed consent.

The eligible patients had to have at least 1 18F-FDG–avid lesion at 18F-FDG, PET/CT. These patients were then considered to have hypoxic lesions if significant 18F-FMISO uptake was observed in the 18F-FDG–avid lesions on a subsequent first 18F-FMISO performed before CCRT (18F-FMISO₁ PET/CT scan within 8 d. The evaluable population was formed from all the eligible patients who completed the protocol (a complete mandatory dataset is included at the end of the study). The patients who eventually withdrew their consent to participate were not evaluated.

The protocol and the consent form were approved by the Comité de Protection des Personnes Nord-Ouest 1 (July 21, 2011). All patients gave their written, informed consent. The study was registered in the Clinical Trials Protocol Registration System (NCT01576796; RTEPS study). The clinical, biologic, imaging, and toxicities data were monitored by a certified clinical research unit.

PET Imaging

The PET/CT machines were Biograph Sensation 16 (Siemens), Gemini (Philips), or Discovery LS (GE Healthcare). For each patient, 2 18F-FDG PET/CT and 2 18F-FMISO PET/CT scans were acquired using the same machine and under the identical operational conditions. Quality control (QC) was centrally supervised to secure homogeneity in the image quality in all participating centers. The QC procedures and results are provided in the supplemental materials (available at http://jnm.snmjournals.org).

The 18F-FDG PET images were acquired in treatment position (arms over the head, free breathing), at least 15 d after the last administration of chemotherapy. No chemotherapy was allowed between the PET/CT and the start of radiotherapy. Six to 8 bed positions per patient were acquired from the head to the upper third of the thighs. The images were acquired at a minimum of 60 ± 10 min after the 18F-FDG injection. The patients were required to fast overnight or for at least 6 h before the imaging to ensure that the serum glucose and endogenous serum insulin levels were low at the time of the 18F-FDG administration. The blood glucose levels were measured before each 18F-FDG PET acquisition. A total of 4.5 MBq/kg were administered intravenously after a rest period of at least 20 min. The first acquisition (18F-FDG₁) after the induction chemotherapy started at T₁ = 0 ± 10 min after injection. The second 18F-FDG PET (18F-FDG₂) was performed during the fifth week of radiotherapy at a total dose of 40–46 Gy as previously demonstrated (9). The acquisition procedure followed conditions identical to those for 18F-FDG₁, specifically, with a T₂ = T₁ ± 5 min.
The 18F-FMISO PET images were acquired under identical conditions. Two to 3 bed positions per patient were acquired for the thorax. The images were acquired at a minimum of 240 ± 20 min after the 18F-FMISO injection. A total of 4.5 MBq/kg were administered intravenously after FIGURE 1. Study design/study flow. SD = stable disease; PD = progressive disease (RECIST 1.1).

TABLE 1
Baseline Characteristics of 54 Included Patients

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Hypoxia, trial arm</th>
<th>No hypoxia</th>
<th>Total (n = 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (n = 34)</td>
<td>Boost (n = 24)</td>
<td>66 Gy (n = 10)</td>
</tr>
<tr>
<td>Sex (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Male</td>
<td>28</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Mean age ± SD (y)</td>
<td>59.5 ± 8.6</td>
<td>60.5 ± 8.4</td>
<td>57.2 ± 9.2</td>
</tr>
<tr>
<td>Mean height ± SD (cm)</td>
<td>169.7 ± 9.3</td>
<td>171.1 ± 10.1</td>
<td>166.6 ± 6.1</td>
</tr>
<tr>
<td>Mean weight ± SD (kg)</td>
<td>73.2 ± 14.6</td>
<td>71.5 ± 12.3</td>
<td>77.2 ± 19.2</td>
</tr>
<tr>
<td>Histology (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCC</td>
<td>17</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>ADC</td>
<td>11</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>Undifferentiated</td>
<td>6</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Tumor stage (n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB</td>
<td>1</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>IIA</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>IIB</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>IIIA</td>
<td>17</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>IIIB</td>
<td>13</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>IV</td>
<td>1</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>Mean radiotherapy dose ± SD (Gy)</td>
<td>73.9 ± 6.7</td>
<td>77.1 ± 5.2*</td>
<td>66 ± 0</td>
</tr>
</tbody>
</table>

*Significantly different from 66-Gy group ($P < 0.0001$).

SCC = squamous cell carcinoma; ADC = adenocarcinoma.
40% of the SUV max inside the primary tumor or nodes (and anatomic localization. The PET images (18F-FDG and 18F-FMISO) were used for random coincidences, scatter and attenuation correction, fifth week of radiotherapy, within 48 h after the 18F-FDG2.

PET Analysis

We previously showed (8) that the assessment of 18F-FMISO/18F-FDG uptake (presence vs. absence) was reproducible in a multicenter setting. In this study, 3 independent experts (of 9) reviewed the 18F-FMISO PET images and decided on the presence or absence of uptake within 48 h.

Because the interobserver agreement for the 18F-FMISO volume measurements was low (8), all images were centrally delineated in a single center (Rouen) by a nuclear physicist and a radiation oncologist, via a dedicated network (Imagys Interface [QI/QO/QA/QC] and Kenoys workstation). (Kenoys company is ISO 9001 and ISO 13485 medical device–compliant. Images were stored and archived on a dedicated IIA class server.) For each patient, the CT image of PET 18F-FDG and 18F-FMISO was first coregistered to the planning CT scan (version 1.4, Oncoplanet; Dosisoft) with registration based on the lesion. The volumes of interest for 18F-FDG metabolic biological target volume (BTVm) were defined as the sum of the pixels above 40% of the SUVmax inside the primary tumor or nodes (/10). The volumes of 18F-FMISO (biologic hypoxic target volume [BTVh]) were defined as the sum of pixels with an SUV 1.4 or more as previously validated (/8). The coregistered 18F-FDG and 18F-FMISO PET/CT (DICOM), as well as BTVm (18F-FDG BTV) and BTVh (18F-FMISO BTVh) (DICOM-RT), were transferred back to the local radiation oncologist by the same network.

In addition, the 18F-FMISO and 18F-FDG images on PET after the induction chemotherapy (PET1) and during radiotherapy (PET2 at 40–46 Gy) were used to calculate the maximum SUVs (PET SUVmax1 and PET SUVmax 2)—that is, the highest-activity pixel value in the BTVs—and the percentages of variation in SUV max (%SUVmax) and BTV (%BTV). The SUVmean yielded results similar to those of the SUVmax and are not presented here.

Radiochemotherapy Protocol

The microscopic extension around the BTVm (clinical target volume [CTV]) was obtained either by isotropic expansion around the tumor (6 mm for squamous cell carcinoma, 8 mm for adenocarcinoma) (/11) or by delineation of the 18F-FDG PET/CT–positive mediastinal nodes (/12). The isotropic CTV margin around the BTVh was set to 5 mm. The margin for the planning target volume (PTV) was 10 mm around the CTV (possibly 15 mm in the cranial caudal direction) to take into account internal movements and uncertainties in positioning.

All the dose calculations were corrected for heterogeneity. Intensity-modulated radiotherapy (IMRT) was not allowed. The total dose was prescribed by the International Commission for Radiation Units point. The dose delivered in the PTV had to be within 95% and 107% of the prescribed dose. The target total dose was 86 Gy, provided that the maximum dose to the spinal cord was strictly less than 46 Gy and that no more than 30% of the total lung volume (excluding the gross tumor volume) received more than 20 Gy.

TABLE 2

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Hypoxia, trial arm</th>
<th>No hypoxia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total (n = 34)</td>
<td>Boost (n = 24)</td>
</tr>
<tr>
<td>18F-FDG SUVmax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET1 (n = 54)</td>
<td>14.5 ± 9.3</td>
<td>13.8 ± 7.8</td>
</tr>
<tr>
<td>PET2 (n = 32)</td>
<td>9.4 ± 6.1*</td>
<td>10 ± 7.1*</td>
</tr>
<tr>
<td>Δ(%):PET2/PET1</td>
<td>−32 ± 26</td>
<td>−27 ± 29</td>
</tr>
<tr>
<td>18F-FDG BTV (BTVm) @ 40% SUVmax (cc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET1 (n = 54)</td>
<td>55.4 ± 72.2</td>
<td>58.9 ± 84.8</td>
</tr>
<tr>
<td>PET2 (n = 32)</td>
<td>36.1 ± 44.6*</td>
<td>39.9 ± 52.5</td>
</tr>
<tr>
<td>Δ(%):PET2/PET1</td>
<td>−10 ± 226</td>
<td>−27 ± 271</td>
</tr>
<tr>
<td>18F-FMISO SUVmax</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET1 (n = 54)</td>
<td>2.5 ± 0.7</td>
<td>2.4 ± 0.6</td>
</tr>
<tr>
<td>PET2 (n = 31)</td>
<td>1.9 ± 0.5*</td>
<td>1.8 ± 0.4*</td>
</tr>
<tr>
<td>Δ(%):PET2/PET1</td>
<td>−17 ± 24</td>
<td>−21 ± 20</td>
</tr>
<tr>
<td>18F-FMISO BTV (BTVh) @ 1.4 SUV (cc)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET1 (n = 54)</td>
<td>33.5 ± 52.2</td>
<td>34.1 ± 58.1</td>
</tr>
<tr>
<td>PET2 (n = 31)</td>
<td>20.9 ± 34.6</td>
<td>18.9 ± 37.4</td>
</tr>
<tr>
<td>Δ(%):PET2/PET1</td>
<td>−24 ± 75</td>
<td>−20 ± 84</td>
</tr>
</tbody>
</table>

*Significantly different from PET1 (P < 0.05).

PET1 = PET after induction chemotherapy; PET2 = PET during radiotherapy.

Data are mean ± SD. P values are for comparisons between trial-arm (n = 34) and no-hypoxia groups (n = 20).
As minor constraints, no more than 30% of the esophagus or the heart could receive more than 50 or 35 Gy, respectively.

The patients received 5 daily fractions of 2 Gy every week, with all the beams being treated daily. The shape of each beam was checked (electronic portal image) on the first fraction. The position of the isocenter was imaged daily (by orthogonal image or cone-beam CT scanner). Concomitant chemotherapy was cis-platinum (50 mg/m^2 days 1, 8, 29, and 36) and etoposide (50 mg/m^2 days 1–5, and 29–33) or cis-platinum (80 mg/m^2 days 1 and 22) and vinorelbine (15 mg/m^2 days 1, 8, 22, and 29). Cis-platinum could be replaced by carboplatin AUC 5 in the case of renal insufficiency.

Follow-up Procedures

The efficacy and toxicity assessments were planned at 3 mo and 1 y after the end of treatment (clinical examination, CT scanner).

Endpoints

The primary endpoint was the tumor response on CT scan at 3 mo (RECIST 1.1). Complete response (CR) was defined as no residual tumor image. Partial response (PR) was defined as a more than 30% reduction in maximal diameter. Progressive disease was defined as a more than 20% increase in the maximal diameter, whereas variations between 30% and 20% were classified as stable disease. The secondary endpoints were early and late toxicity (Common Terminology Criteria for Adverse Events) as well as DFS and OS at 1 y from definitive inclusion.

Sample Size

This open-label, single-arm, nonrandomized, multicenter phase II study followed a Gehan 2-step design. In the first step, 6 patients had to be evaluable 3 mo after completion of treatment. If no CR or PR

TABLE 3

<table>
<thead>
<tr>
<th>Acute adverse events</th>
<th>Hypoxia (n = 34), trial arm</th>
<th>No hypoxia</th>
<th>Boost (n = 24)</th>
<th>66 Gy (n = 10)</th>
<th>66 Gy (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthenia</td>
<td>5</td>
<td>G1&2</td>
<td>G3</td>
<td>G4&5</td>
<td>G1&2</td>
</tr>
<tr>
<td>Pain</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Thoracic pain</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dysphagia</td>
<td>17</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Dyspnea</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Hemoptysis</td>
<td>1</td>
<td>1</td>
<td>(G5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry skin or pruritus</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Anorexia</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Pneumonitis</td>
<td>2</td>
<td>1</td>
<td>(G4)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Cough or expectoration</td>
<td>16</td>
<td>6</td>
<td></td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Hematologic toxicities</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Chemotherapy toxicities</td>
<td>25</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>Other toxicities</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 4

<table>
<thead>
<tr>
<th>Late adverse events</th>
<th>Hypoxia (n = 34), trial arm</th>
<th>No hypoxia</th>
<th>Boost (n = 24)</th>
<th>66 Gy (n = 10)</th>
<th>66 Gy (n = 20)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthenia</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thoracic pain</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dysphagia</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspnea</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dry skin or pruritus</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumonitis</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Peripheral neuropathy</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cough or expectoration</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemotherapy toxicities</td>
<td>3</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Other toxicities</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
was observed, a response rate of more than 40% would be excluded, with 95% power and accrual stopped. If at least 1 response was observed, the number of additional patients to be entered in step 2 was calculated assuming an a priori response rate (complete or partial) of 40%, power $1-\beta = 95\%$, precision $\epsilon = 10\%$, and the number of responses in step 1, that is, 19, 18, 15, and 8 additional patients if 1, 2, 3, or 4 responses in step 1, respectively.

The number of patients to include was calculated as follows to obtain 25 patients evaluable at 3 mo (and 15 patients alive at 1 y, a 50% OS probability). Assuming 5 deaths/lost for follow-up at 3 mo, 30 patients with hypoxic lesions should be recruited and receive CCRT. Assuming that 50% of 18F-FMISO PET/CT would demonstrate the presence of hypoxic lesions, 60 preincluded patients should have persistent 18F-FDG uptake on the postinduction chemotherapy 18F-FDG PET/CT. We anticipated that 20% of the patients would have a negative 18F-FDG PET/CT result after induction chemotherapy (9). Therefore, a total of 75 patients would have to be preincluded. The 30 patients without 18F-FMISO–avid lesions would be monitored for 1 y (a secondary endpoint).

Statistical Analysis

All analyses were conducted according to intent to treat, for example, irrespective of the radiotherapy total dose that was actually delivered. Descriptive statistics (n, mean, SD minimum and maximum) were calculated for the quantitative variables. Frequency and percentages with 95% confidence intervals (CIs) were determined for the qualitative variables. A Levene test was used to assess the equality of variances before comparing the quantitative variables between 2 or more groups (ANOVA). The survival probabilities were compared with a log-rank test. All the significance thresholds were set at 0.05 (2-tailed test). All the statistics were performed using SPSS software (version 20.0; IBM).

RESULTS

Patient Characteristics, Flowchart, and Descriptive Results

The study flow is shown in Figure 1. Seventy-nine patients were preincluded, and 54 patients were definitely included. The reasons for noninclusion were as follows: 8 inadequate procedures, 9 metastases and 3 with an absence of uptake on the 18F-FDG PET/CT, 4 consent withdrawals, and 1 investigator’s decision. Thirty-four patients were eligible for the experimental group (18F-FDG–positive and 18F-FMISO–positive).

In the experimental arm, 24 of 34 (71%) patients received increased radiotherapy total doses (86 Gy, 5 patients; 80 Gy, 2; 76 Gy, 8; 74 Gy, 5, 72 Gy, 2; 70 Gy, 2). Because of organ-at-risk constraints, the dose was limited to 66 Gy in 10 patients. Among
the 20 patients without 18F-FMISO uptake, 19 received 66 Gy, and 1 received 68 Gy.

PET Description

The PET data are reported in Table 2. For the 54 included patients, the 54 18F-FDG1 and 54 18F-FMISO1 were available before the CCRT. In the 34 of 54 patients with hypoxia, 32 of 34 18F-FDG2, and 31 of 34 18F-FMISO2 could be performed during the CCRT at 42 Gy (missing PETs because of medical or technical problems). The mean time intervals between injection and imaging were 66 (SD = 10) and 236 (SD = 6) min for the 18F-FDG and 18F-FMISO PET/CT, respectively. A total of 103 lesions (40 primary tumors and 63 nodes) were observed in the 54 patients. The per-patient and per-lesion analyses gave similar results. We present only per-patient PET data.

The patients with hypoxic lesions had significantly higher 18F-MISO1 SUVmax than the patients without hypoxia (P < 0.001). Similarly, the patients with hypoxia had higher 18F-FDG SUVmax1 (P = 0.02) and larger 18F-FDG BTV1 tumor volumes (P = 0.03). The BTVs delineated on PET after the induction chemotherapy were approximately 40% smaller with 18F-FMISO than with 18F-FDG (SD = 54%), without statistically significant differences between the radiotherapy dose groups. For the 34 hypoxic patients who underwent 18F-FDG (n = 32) and 18F-FMISO (n = 31) during CCRT, 18F-FDG SUVmax, 18F-FDGBTV, and 18F-FMISO SUVmax significantly decreased during CCRT.

Toxicity

Acute and late toxicities are listed in Tables 3 and 4, respectively. There was 1 grade 4 acute pneumonitis case among the 24 patients who received escalated radiotherapy doses. Three acute grade 4 toxicities were observed in the patients having received 66 Gy (whatever their 18F-FMISO uptake). One death (hemoptysis) occurred before the evaluation at 3 mo among the 10 patients with 18F-FMISO uptake and having received 66 Gy. No grade 4 or 5 late radiotherapy-related adverse events or acute/late cardiac toxicities were reported in the entire population. The causes of the 19 reported deaths are described below.

Tumor Response and Survival

The survival curves are presented in Figure 2. The tumor response was evaluated at 3 mo (±7 d). The patient who died before evaluation at 3 mo in the 18F-FMISO–positive/66-Gy group was considered as having a nonresponding tumor. The response (CR+PR) rate at 3 mo was 31 of 54 (57% with 95% CI, 43%–71%). The corresponding figures were 17 of 34 (50%; 95% CI, 34%–66%) in the patients with 18F-FMISO uptake versus 14 of 20 (70%; 95% CI, 48%–85%) in the patients without uptake (P = 0.25). In the 18F-FMISO–positive patients, the response rates were 12 of 24 (50%; 95% CI, 31%–69%) after the escalated radiotherapy doses and 5 of 10 (50%; 95% CI, 24%–76%) after 66 Gy.

At the date of point, 35 patients were alive (a median follow-up duration of 14 mo [range 5–21 mo]), and 19 were alive without disease (15 mo [range, 11–21 mo]). Sixteen of the 19 deaths were due to cancer (9/10 in the high-radiotherapy-dose group, 3/4 in the 18F-FMISO–positive group, and 4/5 in the 18F-FMISO–negative group). The patient in the 18F-FMISO–positive/66-Gy group who died at 3 mo was discussed above. One patient in the high-radiotherapy-dose group was receiving nivolumab for progression under pemetrexed/bevacizumab maintenance. He died at home 17 mo after inclusion, and the cause of death remains unknown (drug toxicity or tumor progression). One patient in the 18F-FMISO group, without previous documentation of a relapse, was admitted to a palliative care unit with cognitive impairment, fever, and intestinal bleeding. He refused investigations and died at 18 mo. The OS and DFS probabilities at 1 y for the entire group were 0.86 (95% CI, 0.77–0.96) and 0.63 (95% CI, 0.49–0.74). Regarding the 18F-FMISO uptake, the OS at 1 y was 0.81 (95% CI, 0.67–0.95) when positive and 0.95 (95% CI, 0.85–1.0) when negative (P = 0.12). The DFS at 1 y was 0.50 (95% CI, 0.32–0.65) and 0.85 (95% CI, 0.60–0.95), respectively (P = 0.004). The DFS was lower after radiotherapy doses larger than 66 Gy (0.50 [95% CI, 0.29–0.68] vs. 0.73 [95% CI, 0.54–0.86]).
In the **18**F-FMISO-positive patients, the DFS was similar regardless of whether the radiotherapy dose was 66 Gy (0.50 [95% CI, 0.18–0.75]) or higher (0.50 [95% CI, 0.29–0.68]).

DISCUSSION

Our purpose was to increase the total dose of radiotherapy in the hypoxic parts of NSCLC in patients who were candidates for curative-intent chemoradiotherapy. Hypoxia has been shown to strongly reduce the radiosensitivity of tumor cells and to be associated with local failure (7). In this study, a key issue was to timely provide the radiation oncologists with a reliable target, anatomically and functionally defined, in a prospective multicenter setting. We have demonstrated that hypoxic areas were identified using **18**F-FMISO PET in 34 of 54 patients (15 centers) and that higher radiotherapy doses (70–86 Gy) could be delivered without excessive toxicity in 24 patients with hypoxic areas. There were no statistically significant differences in the tumor response rates at 3 mo, and the OS at 1 y was similar among the 3 treatment groups. The DFS probability was significantly lower in the **18**F-FMISO-positive patients, regardless of the radiotherapy dose. To our knowledge, we present the largest series of patients with NSCLC receiving radiotherapy boosted based on the hypoxia PET/CT in multicentric and prospective conditions.

As a targeted treatment, radiotherapy critically depends on accurate delineation of the volumes to be irradiated. A conventional CT scan is necessary for planning (Hounsfield units being correlated to electronic densities) and for drawing the anatomic contours of the tumor and the organs at risk. As for functional information (e.g., glucose metabolism with **18**F-FDG), the PET/CT images must be either acquired in the treatment position or registered onto the planning CT. **18**F-FMISO is one of several tracers that accumulate in hypoxic areas (13) and was selected for this study because it is commercially available. Although this study was ongoing, the MAASTRO group demonstrated (using HX4) that hypoxia images were stable when PET/CT was repeated (14) and provided a representation of the tumor functional status that was different from **18**F-FDG images (15). A planning study of 10 patients by the same group showed that hypoxia images could be used to consider delivering heterogeneous doses to the tumor, specifically higher doses to hypoxic areas (16). All the PET tracers of hypoxia yield a relatively low signal-to-noise ratio. Therefore, the initial step of this study was to validate a reproducible method to identify the tumors with hypoxic areas and delineate BTVs for radiotherapy (8). The patients with hypoxia were identified by at least 3 trained experts, and the delineation of all the BTVs was centralized in 1 center. An example of **18**F-FDG and **18**F-FMISO images with BTV are presented in Figure 3.

We did not gate our PET acquisitions on breathing movements. Because **18**F-FMISO uptake is known to be low in lung tumors (SUVmax = 2.5 ±0.7 in our study), good-quality images cannot be obtained in respiratory gated mode, either for SUV measurements or for **BTV**n delineation. Our criteria for **BTV**n delineation was validated in free-breathing patients. We chose not to add further complexity to our design by requiring gated PET acquisitions and, for the sake of consistency, irradiations. In addition, mobile tumors are usually small and located in the parenchyma whereas most stage III tumors are large (and take up **18**F-FMISO) and involve the mediastinum, that is, are mostly fixed. Lin et al. (17) have suggested a low reproducibility of **18**F-FMISO PET images performed within 48 h. More recently, a preclinical study by Busk et al. (18) showed a good reproducibility of PET FAZA images acquired within 48 h (r = 0.82; range, 0.72–0.90), and Zegers et al. demonstrated the reproducibility of PET HX4 images in a human study (14).

Mathematical simulations based on microscopic tumor tissue sections compared **18**F-FMISO, FAZA, and HX4 and showed that **18**F-FMISO provides a robust and reproducible signal 4 h after injection, with a lower contrast (19). Our observation that **18**F-FMISO-avid tumors have a much worse prognosis confirms that hypoxia imaged on a single PET acquisition is a strong prognostic indicator, making it a relevant target volume for selective radiotherapy dose increase.

Radiobiologic and clinical data (7) suggest that total doses above 80 Gy are required to achieve tumor control in NSCLC. The RTOG 0617 (4) randomized trial reported reduced OS probabilities in patients receiving 74 Gy (vs. 60 Gy) in a target volume (median, 90 cc) defined on **18**F-FDG PET/CT. Phase I–II studies have shown that doses in excess of 80 Gy could only be delivered to small tumors (2,3). Our BTVs delineated on **18**F-FMISO PET/CT are approximately 40% smaller than those delineated on **18**F-FDG PET/CT. Our results indicate that **18**F-FMISO uptake is associated with a worse outcome, regardless of the radiotherapy total dose. An increased **18**F-FMISO uptake was correlated with other poor prognosis features (larger tumor size, higher **18**F-FDG SUVmax, and hypoxia) and might not be the sole reason for treatment failure. The absence of **18**F-FMISO uptake identifies a group of tumors with better prognosis. Our OS and DFS at 1 y were no statistically significant differences in the tumor response rates at 3 mo, and the OS at 1 y was similar among the 3 treatment groups. The DFS probability was significantly lower in the **18**F-FMISO–positive patients, regardless of the radiotherapy dose. To our knowledge, we present the largest series of patients with NSCLC receiving radiotherapy boosted based on the hypoxia PET/CT in multicentric and prospective conditions.

An extensive discussion about radiotherapy dose and delivery is beyond the scope of the present paper. Briefly, our patients were irradiated with a 3-dimensional conformal technique. When our trial was designed, IMRT was available in too few French centers. IMRT was used in approximately 50% of the RTOG 0617 patients with outcomes similar to 3-dimensional RT (4). The dosimetry benefits of IMRT have not been confirmed in a randomized trial (20). The dosimetry of protons is characterized by localized high-dose delivery and sharp fall-out (Bragg peak) (21). No significant differences in tumor outcome were observed in a randomized comparison of 3-dimensional proton therapy versus IMRT (22). Radiotherapy in stereotactic conditions is an accepted treatment for tumors up to 65 cc, provided that strict organ at risk dose–volume constraints are met (23). Our patients had mean **18**F-FMISO–avid volumes of 33.5 cc, with large variability (SD = 52.2 cc; range, 1–234 cc). A few additional fractions could be delivered, intended as a concomitant boost, whereas the **18**F-FDG–defined target volume is treated conventionally (2 Gy per fraction), keeping the treatment duration around 6–7 wk. The positive results of accelerated radiotherapy (24) suggest that tumor proliferation during radiotherapy might have contributed to the failure of escalated radiotherapy dosage delivered over a protracted treatment time to improve the outcome in NSCLC (4).

CONCLUSION

This prospective phase II study demonstrates the feasibility of delivering higher radiotherapy doses to smaller target volumes identified by **18**F-FMISO uptake without exceeding the tolerance
to the normal organs. The benefit of this approach, possibly with larger doses per fraction in stereotactic conditions as a concomitant boost, remains to be investigated in a randomized trial.

DISCLOSURE

This study was supported by a grant from the French National Cancer Institute (PHRC 2011). No other potential conflict of interest relevant to this article was reported.

ACKNOWLEDGMENTS

We thank the patients who agreed to participate in this study and their respective referring pneumologists, nuclear medicine physicians, and radiation oncologists from the participating centers. We also thank the technologists from the Department of Nuclear Medicine (Centre Henri Becquerel) for their help in managing the patients. We are particularly thankful to Olivier Rastelli, Lucie Burel, Pierrick Gouel, Céline Breton, Dorianne Richard, and Dr. Louis-Ferdinand Pepin for their excellent collaboration.

REFERENCES

Phase II Study of a Radiotherapy Total Dose Increase in Hypoxic Lesions Identified by \(^{18}\text{F}-\text{Misonidazole PET/CT}\) in Patients with Non–Small Cell Lung Carcinoma (RTEP5 Study)

Published online: March 2, 2017.
Doi: 10.2967/jnumed.116.188367

This article and updated information are available at:
http://jnm.snmjournals.org/content/58/7/1045

Information about reproducing figures, tables, or other portions of this article can be found online at:
http://jnm.snmjournals.org/site/misc/permission.xhtml

Information about subscriptions to JNM can be found at:
http://jnm.snmjournals.org/site/subscriptions/online.xhtml