By Norman E. Bolus, MSPH, MPH, CNMT, FSNMMI-TS

The American Heart Association New 2016 CPR Guidelines

Every health care worker is familiar with the “ABCs” (airway, breathing, circulation) of cardiopulmonary resuscitation (CPR). It has been the hallmark of the American Heart Association (AHA) guidelines since the organization’s formation. Since 2011, the “ABCs” of CPR were revised and renamed “CAB.” These standards promote circulation as the primary focus of the CPR guidelines. CAB stands for chest compressions, airway and breathing—with emphasis on chest compressions. AHA recommends chest compressions or compression-only CPR for the lay public. Instructions from a 911 operator will only advise continued chest compressions in the public setting, with at least 100–120 compressions per minute by applying a firm downward pressure on the center of the sternum. Research indicates the optimal rate of compression is actually nearer to 130 compressions per minute, with a 2- to 2.4-inch depth (5 cm) for each compression for an adult. The AHA continues to recommend that the airway and breathing portions of CPR be retained for health care providers, because most health care settings are set up with an Ambubag and a team approach for caring for the victim. The 2016 standards added only a few new components to the 2011 standards. Specifically, now for all age categories the recommended rate of compressions is at least 100–120 compressions per minute, which is different from previous recommendations of at least 100 compressions. In addition, for the adult victim, the 5 cm or 2–2.4 inch depth is now considered the standard, up from at least 2 inches for the adult victim in 2011.

For adult victims (defined by AHA as anyone who shows signs of puberty—underarm or chest hair development in males and breast development in females), the new standards for health care providers for one-person CPR are as follows:
1. Establish scene safety—is it safe to respond?
2. Establish unresponsiveness—shake and shout.
3. Activate EMS. Call 911 or local emergency telephone number or call a code.
4. Check for circulation and breathing at same time by checking the carotid pulse for no fewer than five seconds, but no more than ten seconds, and looking to see if the chest is rising and falling, indicating breathing.
5. If the victim does not have a pulse and is not breathing, then find hand position (center of sternum) and begin chest compressions. To find the correct hand position, put the heel of one hand in the center of the chest or lower half of breastbone, between the nipples. The heel of one hand is placed on top of the other. The fingers may be extended or interlaced but should be kept off the chest. Deliver 30 compressions at a 2- to 2.4 inch (5cm) depth.
5a. If the victim has a pulse but is not breathing, then rescue

Continued on page 3 see CPR Guidelines
The American Society of Nuclear Cardiology (ASNC) has recently updated its guidelines for SPECT myocardial perfusion imaging including stress testing, imaging protocols and tracers. There are minimal changes to the stress testing guidelines; however, there are significant changes to radiopharmaceutical dosing recommendations to keep radiation exposure as low as reasonably achievable. The figures demonstrating protocols were upgraded. A schematic showing the physiology of vasodilator stress agents and adenosine receptor types is a nice addition. The guidelines stress that no protocol is optimal for every patient and that the protocol used should be tailored to the patient; this includes consideration of the patient history and body habitus as well as the hardware and software used for imaging.

For several years the field has been asking for a BMI-based 99mTc-labeled perfusion tracer dosing guideline. The updated guidelines provide the following suggestion: 8 mCi of 99mTc for patients with BMI < 25 kg/m2, 9 mCi of 99mTc for patients with BMI > 25-30 kg/m2, 10 mCi of 99mTc for patients with BMI > 30-35 kg/m2, and 12 mCi of 99mTc for patients with BMI > 35 kg/m2 or a large chest, with three times this activity used for the second dose of the day. These suggested doses are for labs using conventional SPECT cameras paired with filtered back-projection or iterative reconstruction without incorporation of resolution recovery. Another important issue that the revised guidelines address is appropriate dosing for labs utilizing newer technology such as solid state cadmium zinc telluride (CZT) crystal cameras and/or using iterative reconstruction paired with resolution recovery software. Suggested doses for one-day protocols utilizing this technology are as low as 4.0 mCi, followed by 12 mCi for 99mTc-labeled myocardial perfusion tracers. A patient stressed first with 4.0 mCi with images demonstrating normal perfusion results in a radiation exposure of 1.0 mSv.

The maximum dose for 201Tl-thallous chloride is now 3.5 mCi. This reduced dose, compared to previous guidelines, still results in a radiation exposure of 15 mSv. Due to the much higher radiation exposure, 201Tl should be reserved for elderly patients who require a shorter protocol or for patients who need both a perfusion and a viability assessment.

The updated guidelines also include direction for utilization of 123I-meta-iodobenzyl guanidine (mIBG) for assessment of sympathetic innervation of the myocardium. Specifics are included for immediate and delayed planar imaging, including calculation of the heart-to-mediastinal ratio as well as tracer washout. Additionally, SPECT acquisition and processing parameters are included.

breathing should be performed. For the adult victim, perform 1 breath every 6–8 seconds, and for the child or infant victim, one breath every 3–5 seconds.

6. Open the airway using head-tilt/chin-lift method, unless neck trauma is suspected (then use jaw-thrust method).

7. If the victim is not breathing, give two breaths (one second each, enough for the chest to rise), pinching the nose and encircling the mouth, then continue with chest compressions.

8. The ratio of chest compressions to breaths is 30 compressions to two ventilations.

9. The compression rate should be at least 100–120 compressions per minute (130 is optimal).

10. Continue CPR until help arrives or until the rescuer becomes physically exhausted.

In a team approach using an Ambubag, once the victim has been determined to be unresponsive and without a pulse, a hospital code or 911 call is made and CPR is initiated. One team member will perform chest compressions while a second member of the team maintains an open airway and a good seal on the facemask of the Ambubag. This allows a third member of the team to successfully administer ventilations once every six seconds using an asynchronous technique to coincide with the conclusion of a chest compression. In the team approach, roles should be switched every two minutes or when the compressor asks for a switch due to fatigue.

The standards for children (cited by AHA as one-year-old to those with signs of puberty) are exactly the same as for adults in all aspects for one-person rescue except that the chest compressions are performed with the heel of one or two hands to a depth of two inches or one-third of the width of the child’s chest, whichever is greater. The ratio of 30 compressions to two breaths for one-person rescue remains the same; however, in a two-person rescue, 15 compressions are followed by two breaths.

For infants (less than one-year-old), CPR has always been slightly different. Circulation is checked by feeling for the brachial artery instead of the carotid artery, and compressions are done with two fingers on the sternum, one finger’s width below the imaginary nipple line, with compressions at a depth of 1.5 inches or one-third of the width of the infant’s chest, whichever is greater. If two people are available, the preferred compression technique for an infant is performed with a “two thumbs encircling hand technique” where the hands encircle the infant chest and the thumbs are placed on the lower third of the sternum away from the xiphoid process. Fifteen compressions are then performed, followed by two breaths. For one-person CPR, the ratio of 30 compressions to two breaths, starting with compressions instead of opening the airway, is the same for all three age groups—adult, child, and infant—in the standards.

The emphasis on continuous chest compressions is based on research that demonstrates a very biologically plausible explanation. Chest compressions build up an artificial blood pressure in the body with the goal to move oxygenated blood to the brain. The best one can do is about 20 percent of normal pressure during active compressions; however, when the compressions cease, blood pressure goes back to zero. Therefore, the team approach of attempting to give continuous chest compressions is the best case for survival if advanced care, such as intubation or giving cardiac drugs from a crash cart, is not available.

Additionally, when an automatic external defibrillator (AED) is promptly utilized, survival rates dramatically improve. The universal steps on any AED are to turn the unit on (usually by opening it up), apply the pads so that there is good skin-to-pad contact, take an EKG analysis (the machine will do this automatically or ask that you push the analyze key), and give a shock, if advised (the machine decides if the EKG reading is a shockable rhythm or not and only powers the pads up to deliver a shock if there is a shockable rhythm). When using an AED, the person who retrieved the unit should work around the team administering CPR until the AED pads are on the victim and the unit signals that it is ready to take an EKG reading. The AED will determine if the victim’s rhythm is shockable and, if so, will charge the unit in preparation for the electrical discharge to the victim’s chest. Caution should always be taken when applying the pads so that good skin-to-pad contact occurs and the pads are not placed over a pacemaker or transdermal patch (including a nitroglycerin patch). Other factors to consider when using an AED are the immediate surroundings. The human body is a conductor of electricity; therefore, when the pads are discharged, it is important that rescuers are not in contact with the victim and that the victim and rescuers are not in contact with water or metal that might inappropriately conduct the electrical charge.

The only other new recommendation for CPR from the AHA has to do with an avulsed tooth. If a victim loses a tooth, then the recommendation is to try to replace the lost tooth back into the mouth (which is painful) or to find a cup of milk and put the tooth in a cup of milk and send it with the victim to the emergency room when help arrives.

For first aid, the only new recommendation from the AHA involves the use of an epipen. If a victim is experiencing an anaphylactic reaction and uses an epinephrine pen, then if, after delivering the first dose, the victim does not respond after
FOCUS ON THE FELLOW

David Campbell, CNMT, can now check off of his long list of goals that he wished to accomplish. Now that he has achieved this personal goal, he hopes to retire in the next few years, after which he plans to fish, golf and travel.

David’s first job growing up was as a paperboy in Oklahoma City—but all the while, he dreamed of being an astronaut or fighter pilot. When he went to college he became the campus mailman for student mail. While attending college and working on a biology degree, he went on a “career day” field trip to the University of Arkansas Medical Sciences Campus with his then girlfriend, now wife of 39 years, as she checked out their nuclear medicine program. During that visit he was fascinated by what he saw and decided to apply to nuclear medicine school.

David graduated in 1976 with a BS in Nuclear Medicine Technology from the University of Arkansas College of Health Related Professions in Little Rock, AR. During his career he has worked as a staff technologist, department director and industry representative. David spent 22 years in sales with the DuPont Medical Imaging/BMS Medical Imaging companies then IBA Molecular. He is currently the director of imaging services for Southwest Diagnostic Imaging Center (SWDIC) and Southwest Diagnostic Centers for Molecular Imaging (SWDCMI) in Dallas, Texas. As director of SWDIC/SWDCMI, David oversees CT, MRI, X-Ray, PET/CT, ultrasound, mammography, nursing, PACS, research and more. He loves the people he works with and refers to them as an “excellent team.”

David has been very involved in the SNMMI-TS, both on the local and national levels, thanks to Art Hall and April Mann. As a member of the Southwest Chapter, he took on each role on the executive board—including two terms as president. On the national level he has been on the Technologist Section Finance Committee, Committee on Finance, Committee on Chapters, and many more. When asked about the highlights of being so involved, he states that for him, the highlights are “the people you meet, the friendships you make and the networking opportunities.” He points out that until you get involved, you really don’t know how much work and support the SNMMI contributes to the nuclear medicine profession.

David has a true nuclear family. His wife, Vivian, and his daughter, Rhea Anne, are also nuclear medicine technologists. He and his wife also have a son, Derek, and two beautiful granddaughters, Addison and Kensley. When not working, volunteering at SNMMI-TS or spending time with his family, you can find David on the links, as golfing is one of the pastimes he is crazy about. He also has a penchant for fajitas and margaritas and won’t turn down an invitation to partake in a meal. The trifecta would be a day of golf, followed by some Arkansas Razorback Football, while eating Mexican food. You can practically hear David screaming “Whooooo Pig Sooooooe!!” now.

When asked to give advice to nuclear medicine technologists who want to get involved, he said: “Don’t be afraid to put yourself out there…I would also highly encourage anyone to attend the SNMMI-TS Leadership Academy.” David has always been passionate about the field of nuclear medicine, and it shows, especially with his love to share his experiences with others. It is important to David to open others’ eyes to the profession; to show people that nuclear medicine is more than just scanning patients and that other opportunities abound.

ADVOCACY CORNER

CRCPD Update

The Conference of Radiation Control Program Directors (CRCPD) held its 48th Annual Meeting on May 16-19, 2016, in Lexington, Kentucky. This year’s Annual Meeting was focused on how to maintain high-quality radiation protection programs in this era of change. SNMMI presented two timely lectures at the meeting: Frederic H. Fahey, DSc, FSNMMI, discussed the movement for worldwide pediatric nuclear medicine standardization; Pat B. Zanzonico, PhD, discussed the uses of ⁶⁸Ga DOTA radiopharmaceutical imaging and ¹⁷⁷Lu therapies. Participants also heard presentations from representatives from various government agencies and organizations including the:

- Department of Energy (DOE)
- Nuclear Regulatory Commission (NRC)

Continued on page 9 see Advocacy Corner
This coming year will be a year for growth and change within the Technologist Section. During the fall Executive Board meeting, the board engaged in a strategic discussion where many “mega” issues were identified. These are issues that may directly affect all of us, as members and nuclear medicine professionals, as well as the SNMMI-TS as an organization. While the board only had time to discuss a few of the mega issues that were identified, the discussion will continue throughout the year. We are committed to moving the profession forward by ensuring that our members have the resources they need to be successful and equipped for the changes and advancements that are coming to the nuclear medicine and molecular imaging field.

As Sara described in her column in the last issue of Uptake, many new educational resources are being developed. Specifically, the Continuing Education Committee, under the leadership of Kathy S. Thomas, MHA, CNMT, FSNMMI-TS, will be working on the following projects this year:

- In collaboration with the ARRT, developing clinical refresher tools that will be linked to the ARRT Continuing Qualification Requirements (CQR).
- Developing an online CT program that will help members achieve the total number of continuing education credits needed to apply to sit for the ARRT and/or NMTCB CT certification exam.

Similarly, this year you will see much more concerted advocacy efforts at the state and chapter levels. Advocacy leadership will be speaking at the chapter meetings to inform members of the specific issues affecting their states, as well as providing some tips and tricks on how to stay engaged at the local level with legislative activities. We will also be working to get all of the state Technologist Advocacy Group (TAG) members to their chapter meetings so they can network with the members of their chapters.

TAG Team members identify changes in state laws/regulations concerning the practice of nuclear medicine, address concerns/questions submitted by SNMMI-TS members from their state, and stay on top of news or policy changes that might affect technologists. The SNMMI-TS has benefited greatly from these grassroots efforts over the past year, and the increased awareness and dedication to this area is sure to prove even more successful this coming year. The changes that our state TAGs have been able to make within their states have been remarkable, and we hope that with their continued efforts, we will see appropriate regulations for nuclear medicine technologists throughout the United States.

As we work to advance the profession and prepare our member technologists, we are also working to develop new resources for nuclear medicine technologist students. The SNMMI-TS free-trial student program will continue, as will the transition graduation program. In addition, the SNMMI-TS will work more closely with program directors to help them integrate students into the profession and society. We will provide students with a handbook for what to do and how to do it. This resource was requested by both students and program directors, and it will provide information on what is needed to sit for the nuclear medicine exam (either ARRT or NMTCB), eligibility requirements for advanced specialty exams, how to maintain your SNMMI-TS membership to ensure proper tracking of continuing education, how to build and/or update your resume, and tips for new graduates.

SNMMI-TS is here to serve as the resource and advocate for all nuclear medicine technologists. As we build these tools and programs, the Membership Committee will be reaching out to those in the field who are not yet members (or have let membership lapse). Recruitment will focus on targeted audience segments with highly customized messages about the benefits of SNMMI participation. A series of videos on SNMMI resources, membership benefits, and opportunities for involvement is also in development. Also, active members will provide testimonials on what SNMMI-TS membership means to them. At the chapter level, a new sponsor-a-member campaign will encourage and reward grassroots recruitment efforts by current members.

The SNMMI-TS recognizes that communication is essential, and the leadership is committed to keeping members informed of key updates and progress. We know that communication happens in many ways. Please watch for regular updates on industry news, issues SNMMI is addressing, new educational offerings and benefits via e-mail blasts, Facebook, Twitter, Instagram, and the SNMMI LinkedIn group.

We hope you are taking advantage of all your membership provides and are communicating concerns as they arise. Please send your feedback to Nikki Wenzel-Lamb at nwenzel@snmmi.org. The Technologist Section relies on your feedback to ensure programs and advocacy are meeting your needs and helping you pursue your full scope of practice, achieve your career goals and provide the highest quality of care to your patients.

CPR Guidelines continued from page 3

5–10 minutes, then the AHA now recommends administering a second epipen dose to the victim if one is available. To use an epipen, jab the pen into the patient’s thigh muscle through clothing, wait ten seconds, then remove the pen and rub or massage the injection site for ten seconds.

The CAB approach for CPR has improved success rates for CPR alone from an abysmal four percent to double digits; ongoing research continues to assess improved survival rates using CAB plus AED, which may actually exceed 20 percent. This is a significant improvement from the past which, at best, was about 12-14 percent with an AED. Future equipment in development includes an automatic chest compression vest, similar to shock trousers, and an Ambubag regulator that prompts the rescuer to give ventilations. Regardless of available aids, CPR recertification will include the new CAB standards and techniques that emphasize rapid, hard compressions that concentrate on building and maintaining blood pressure with minimal interruptions for a successful CPR outcome.
SNMMI 2017 Mid-Winter Meeting

The SNMMI 2017 Mid-Winter Meeting and ACNM Annual Meeting will be held at the beautiful Arizona Grand Resort and Spa in sunny Phoenix, Arizona. Exceptional hotel rates have been negotiated for all participants at this AAA Four Diamond all-suite resort—see article on p. 7 for information about the site and the area.

An exceptional educational program has been designed to meet the clinical and professional needs of today’s technologists. The comprehensive program is scheduled from 7:45 am–5:15 pm on Saturday, January 21, and provides attending participants with up to 8 hours of continuing education credit. Lecture topics include:

Session I: What’s New in Nuclear Medicine for the Technologist
• New Tracers in the Clinic: What Technologists Need to Know (R)
• PET/MRI from the Technologist’s Perspective (I)

Session II: How Nuclear Medicine Technologists Can Reinvent Themselves for Today’s Job Market
• Nuclear Medicine Technologists: Reinventing Yourself to Maximize Your Value (NI)
• Speed Networking (NI)

Session III: Updates and Techniques in Imaging for Improved Quality, Safety and Patient Outcomes
• Gastric Nuclear Medicine Studies: A Review for the Technologist (I)
• Myocardial Perfusion Imaging in 2017 (I)
• Creating a Culture of Patient Safety: Human Factor Considerations (NI)
• Compliance with Gastric Emptying Scintigraphy Guidelines: A Report from the Intersocietal Accreditation Commission Database (NI)

In addition to the above, more than 23 additional hours of VOICE A/A+ continuing education credits will be available in over 40 sessions at the Mid-Winter Meeting. For a detailed Mid-Winter Meeting program, visit the SNMMI website.

Free Quarterly Webinar Program: The quarterly webinar programs continue to be very successful—but hey, who doesn’t appreciate a free educational experience in a home or department setting? We are currently developing lecture topics for the coming year and appreciate all suggestions for topics and speakers. Please email your suggestions to kstomas0412@msn.com.

Additional CE Projects for 2017: Additional educational projects that the CE Committee plans to work on include:
• Online PowerPoint presentations that can be used for annual competency review by technologists and institutions on a wide variety of topics including radiopharmacy/radiation safety, adjunctive medications, instrumentation, patient safety, etc. Programs will include hard-copy competency checklists that can be filed for accreditation inspections.
• An educational guideline for USP 797—a resource for technologists
• Revised/updated CT Workshops

If you would like to work with the CE Committee on these or any other projects, please contact Kathy Thomas at kstomas0412@msn.com.

SNMMI Learning Center

If you attend chapter or affiliated organization meetings that are approved for VOICE credit, please remember to log into the SNMMI Learning Center to complete the evaluation and receive your CE certificate. Go to www.snmmilearningcenter.org and click on “My Activities” in the box on the left. Your SNMMI ID # is used for every meeting. Credit data are available 2-3 weeks after the program. Questions? Contact Education@snmmi.org.
The SNMMI Mid-Winter Meeting and ACNM Annual Meeting will be held this year on January 19-22 at the Arizona Grand Resort & Spa, a AAA Four-Diamond all-suite resort. When you’re finished absorbing all the latest research and innovations in the field (see VoiceBox, p. 6), you can enjoy the many things the resort and the Phoenix area have to offer.

Nicknamed the Valley of the Sun, Phoenix is one of the sunniest cities in the United States, with an average 300 days of sunshine a year. In late January, the highs are typically around 70 degrees—great weather for enjoying the outdoors—or the 18-hole golf course.

There are a number of dining options at or adjacent to the resort. Aunt Chilada’s offers Mexican fare and patio dining, Rustler’s Rooste is a steakhouse with great views and country western dancing, and there are several casual restaurants and bars.

If you want to get away from the resort, there are some great options nearby. Tempe offers many dining options, from a Hong Kong diner to a crepe bar. Phoenix itself is renowned for authentic Mexican food. Scottsdale, a bit further, has great nightlife, with more than 80 wine bars, lounges and dance clubs.

Gila River runs three casinos nearby, in Laveen and Chandler. Chandler also has Rawhide Western Town, an authentic replica of an 1880s town complete with a Main Street, gunfights, stagecoach, train rides, burro rides, mechanical bull and more—and for shoppers, the Phoenix Premium Outlets, with more than 90 stores.

If you want to stick around for a day or two after the meeting, Arizona Grand Resort & Spa is located on 164 acres at the base of the spectacular South Mountain Preserve, with 16,000 acres of great hiking, biking and spectacular views. McDowell Mountain Regional Park offers more than 50 miles of trails, and Camelback Mountain (2,706 feet) offers hiking, rock climbing, ziplining and adventure courses.

Don’t forget to join exhibitors and colleagues during the Exhibitor Welcome Reception on Friday evening. Exhibitors will have information and products on display showcasing the latest technology, products, and services available in the nuclear medicine and molecular imaging fields. Light refreshments will be served.

www.snmmi.org/mwm2017
The SNMMI-TS and the Education and Research Foundation for Nuclear Medicine and Molecular Imaging (ERF) have a long tradition of supporting the educational opportunities of future nuclear medicine technologists. Listed below are scholarship and grant opportunities available to the SNMMI-TS.

Paul Cole Technologist Scholarship ($1,000): This scholarship supports ten students in nuclear medicine technology programs and honors the memory of Paul Cole, CNMT, FSNMMI-TS, Past-President of the SNMMI-TS and a champion of education for technologists. This award is made possible by the support of the ERF.

ERF SNMMI-TS Bachelor’s Degree Completion Scholarships ($4,000): This scholarship supports up to two current nuclear medicine technologists who are pursuing a Bachelor’s degree completion program related to their nuclear medicine careers. These scholarships are funded by the ERF.

Advanced Practitioner Program Scholarship ($5,000): This scholarship serves to support a student who is pursuing an advanced practitioner program to advance their career in nuclear medicine.

ERF-SNMMI-TS Annual Meeting Travel Awards ($1,000): Travel Awards support the attendance of certified nuclear medicine technologists, CNMT or RT(N), in order to present molecular imaging abstracts at the SNMMI Annual Meeting. There are a limited number of awards funded by the ERF. The travel awards directly correlate with the number of abstracts being presented by a nuclear medicine technologist at the SNMMI Annual Meeting.

ERF-SNMMI-Technologist Student Annual Meeting Travel Awards ($1,000): Travel awards support the attendance of nuclear medicine technology students in order to present molecular imaging abstracts at SNMMI Annual Meeting. There are a limited number of awards funded by the ERF. The travel awards directly correlate with the number of abstracts being presented by a nuclear medicine technology student at the SNMMI Annual Meeting.

ERF-SNMMI-TS Outstanding Technologist and Educator Awards (award amount varies annually): The purpose of this award is to recognize an SNMMI-TS member who has demonstrated outstanding service and dedication to the field of nuclear medicine technology. Eligible candidates include SNMMI-TS members in any area of the field of nuclear medicine technology who have exhibited commitment to advancing the field in their workplace and through their involvement with the Society. Both clinical nuclear medicine technologists and educators are eligible and are encouraged to be nominated. Nominees must be involved with the Society at the local, regional and/or national level and have at least five years of experience in nuclear medicine technology.

PDEF Professional Development Scholarship ($5,000): This scholarship serves to support a student who is employed as a technologist and is actively pursuing an advanced degree (master’s or above) related to his/her nuclear medicine career. Applicants must have worked in the nuclear medicine profession for at least five years in a clinical or didactic setting. This scholarship is funded by Professional Development and Education Fund (PDEF).

Mickey Williams Technologist Minority Scholarship (up to two scholarships, $2,500 each): These scholarships support minority students pursuing a two- or four-year degree in nuclear medicine. This scholarship honors the memory of Mickey Williams, a past SNMMI-TS president who immigrated to the United States from Jamaica. Two winners will be selected; these awards are made possible by the Professional Development and Education Fund (PDEF).

For the most up-to-date information about these programs, visit www.snmmi.org/grants or contact the SNMMI Development Department via email, tellmer@snmmi.org, or phone, 703.652.6780, with any questions.
2016-2017 ERF FUNDED SNMMI/SNMMI-TS GRANTS AND AWARDS TIMELINE

<table>
<thead>
<tr>
<th>Program</th>
<th>Start Date</th>
<th>End Date</th>
<th>Evaluation Deadline</th>
<th>Award Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 Hyman-Ghesani SNMMI RAD-AID Global Health Scholarship</td>
<td>9/1/2016</td>
<td>12/31/2016</td>
<td>Rolling</td>
<td>$4,000</td>
</tr>
<tr>
<td>2017 Robert E. Henkin Government Relations Fellowship</td>
<td>9/1/2016</td>
<td>12/31/2016</td>
<td>End of Jan</td>
<td>$5,000</td>
</tr>
<tr>
<td>2017 Ursula Mary Kocemba-Slosky, PhD, Professional Relations Fellowship</td>
<td>9/19/2016</td>
<td>10/18/2016</td>
<td>Mid November</td>
<td>$5,000</td>
</tr>
<tr>
<td>2017 PDEF Mickey Williams Minority Scholarship</td>
<td>09/12/2016</td>
<td>10/07/2016</td>
<td>End of Oct</td>
<td>$2,500</td>
</tr>
<tr>
<td>2017 ERF-SNMMI CMIIIT Lab Professional Recognition Award for Contributions to Molecular Imaging</td>
<td>09/1/2016</td>
<td>10/05/2016</td>
<td>End of Apr</td>
<td>$1,500</td>
</tr>
<tr>
<td>2017 SNMMI Fellow</td>
<td>09/01/2016</td>
<td>11/01/2016</td>
<td>March</td>
<td>Non-Monetary</td>
</tr>
<tr>
<td>2017 Paul C. Aebersold, PhD, Award</td>
<td>10/15/2016</td>
<td>11/15/2016</td>
<td>Mid Dec</td>
<td>Non-Monetary</td>
</tr>
<tr>
<td>2017 PDEF Professional Development Scholarship</td>
<td>10/01/2016</td>
<td>11/01/2016</td>
<td>End of Nov</td>
<td>$5,000</td>
</tr>
<tr>
<td>2017 Bradley-Alavi Student Fellowship</td>
<td>10/01/2016</td>
<td>11/01/2016</td>
<td>End of Nov</td>
<td>$3,000</td>
</tr>
<tr>
<td>2017 Loewinger-Berman Award</td>
<td>10/01/2016</td>
<td>12/10/2016</td>
<td>End of Dec</td>
<td>$1,000</td>
</tr>
<tr>
<td>2017 Mitzi & William Blahd, MD, Pilot Research Grant</td>
<td>11/01/2016</td>
<td>12/05/2016</td>
<td>End of Dec</td>
<td>$25,000</td>
</tr>
<tr>
<td>2017/2018 ERF-SNMMI Predoctoral Molecular Imaging Scholar Program</td>
<td>12/01/2016</td>
<td>01/14/2017</td>
<td>Mid February</td>
<td>$20,000</td>
</tr>
<tr>
<td>2017 ERF-SNMMI Travel Awards</td>
<td>12/12/2016</td>
<td>4/13/2017</td>
<td>Mid May</td>
<td>$1,000</td>
</tr>
<tr>
<td>2017 ERF-SNMMI-TS Travel & Student Travel Awards</td>
<td>12/12/2016</td>
<td>4/13/2017</td>
<td>Mid May</td>
<td>$1,000</td>
</tr>
<tr>
<td>2017 ERF-SNMMI-TS Outstanding Technologist</td>
<td>12/12/2016</td>
<td>4/13/2017</td>
<td>Mid May</td>
<td>$750</td>
</tr>
<tr>
<td>2017 Paul Cole Technologist Scholarships</td>
<td>01/02/2017</td>
<td>2/1/2017</td>
<td>End of Feb</td>
<td>$1,000</td>
</tr>
<tr>
<td>2017 ERF-SNMMI MI Research Grant for JAF</td>
<td>02/01/2017</td>
<td>03/10/2017</td>
<td>End of March</td>
<td>$52,500</td>
</tr>
<tr>
<td>2017 ERF-SNMMI-TS Bachelor's Degree Completion</td>
<td>07/01/2017</td>
<td>08/01/2017</td>
<td>End of Aug</td>
<td>$4,000</td>
</tr>
<tr>
<td>2017 ERF-SNMMI-TS Advanced Degree Award</td>
<td>07/01/2017</td>
<td>08/01/2017</td>
<td>End of Aug</td>
<td>$5,000</td>
</tr>
</tbody>
</table>

Advocacy Corner continued from page 4

- FDAs Center for Devices and Radiological Health
- Federal Emergency Management Agency (FEMA)
- Environmental Protection Agency (EPA)
- Department of Transportation (DOT)
- Centers for Disease Control (CDC)
- Department of Homeland Security (DHS)
- National Institute for Occupational Safety and Health (NIOSH)
- National Institute of Standards and Technology (NIST)
- National Academy of Sciences (NAS)
- International Atomic Energy Agency (IAEA)
- American College of Neurropsychopharmacology (ACNP)

CRCPD is non-government organization whose mission is to provide a common forum for the exchange of information among state and local radiation control programs and for states to communicate with the federal government on radiation protection issues. From this organization comes suggested state regulations which at times impact the nuclear medicine profession. At this time there are several issues being addressed.

An ongoing NRC discussion concerns sodium iodide 131I treatment and patient education. The SNMMI is weighing in heavily on these issues and is aiding the NRC with surveys and information. The discussion is twofold: when to release treated patients and what education patients should receive about their treatment. The question and answer period during the meeting with the NRC was productive.

Another topic of discussion is how to regulate the new 68Ge/68Ga generators for the states and how to work with the requirements for decommissioning funding plans (DFPs) to ensure cleanup of radioactive material. The manufacturer of a generator and manufacturer of a 68Ga DOTA radiopharmaceutical discussed the impediment of facility startups due to the exorbitant cost of financial assurance for decommissioning.

The 2016 CRCPD/SCATR Source Collection and Disposal Opportunity is again collecting orphan sealed sources and provides cost-sharing for the effort to dispose of the items. This money is from a Department of Energy grant and offers a 40 percent cost share to offset the cost of packaging, transport and disposal of the unwanted sealed sources. Those interested in this program can register at http://osrp.lanl.gov/PickUpSources.aspx.
Reaching New Heights in the Mile High City!

RACE REGISTRATION IS NOW OPEN!

Individual and Teams Are Welcome! Sign Up Today!

www.snmmi.org/HotTrot5K

NEW THIS YEAR
Virtual option!

Can’t make it to Denver but really want the medal? Sign up today! Your swag bag and medal will be mailed after June 10, 2017.